Step |
Hyp |
Ref |
Expression |
1 |
|
releq |
⊢ ( 𝑅 = 𝑆 → ( Rel 𝑅 ↔ Rel 𝑆 ) ) |
2 |
|
dmeq |
⊢ ( 𝑅 = 𝑆 → dom 𝑅 = dom 𝑆 ) |
3 |
2
|
eqeq1d |
⊢ ( 𝑅 = 𝑆 → ( dom 𝑅 = 𝐴 ↔ dom 𝑆 = 𝐴 ) ) |
4 |
|
cnveq |
⊢ ( 𝑅 = 𝑆 → ◡ 𝑅 = ◡ 𝑆 ) |
5 |
|
coeq1 |
⊢ ( 𝑅 = 𝑆 → ( 𝑅 ∘ 𝑅 ) = ( 𝑆 ∘ 𝑅 ) ) |
6 |
|
coeq2 |
⊢ ( 𝑅 = 𝑆 → ( 𝑆 ∘ 𝑅 ) = ( 𝑆 ∘ 𝑆 ) ) |
7 |
5 6
|
eqtrd |
⊢ ( 𝑅 = 𝑆 → ( 𝑅 ∘ 𝑅 ) = ( 𝑆 ∘ 𝑆 ) ) |
8 |
4 7
|
uneq12d |
⊢ ( 𝑅 = 𝑆 → ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) = ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ) |
9 |
8
|
sseq1d |
⊢ ( 𝑅 = 𝑆 → ( ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) ⊆ 𝑅 ↔ ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ⊆ 𝑅 ) ) |
10 |
|
sseq2 |
⊢ ( 𝑅 = 𝑆 → ( ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ⊆ 𝑅 ↔ ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ⊆ 𝑆 ) ) |
11 |
9 10
|
bitrd |
⊢ ( 𝑅 = 𝑆 → ( ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) ⊆ 𝑅 ↔ ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ⊆ 𝑆 ) ) |
12 |
1 3 11
|
3anbi123d |
⊢ ( 𝑅 = 𝑆 → ( ( Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) ⊆ 𝑅 ) ↔ ( Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ⊆ 𝑆 ) ) ) |
13 |
|
df-er |
⊢ ( 𝑅 Er 𝐴 ↔ ( Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) ⊆ 𝑅 ) ) |
14 |
|
df-er |
⊢ ( 𝑆 Er 𝐴 ↔ ( Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ ( ◡ 𝑆 ∪ ( 𝑆 ∘ 𝑆 ) ) ⊆ 𝑆 ) ) |
15 |
12 13 14
|
3bitr4g |
⊢ ( 𝑅 = 𝑆 → ( 𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴 ) ) |