Metamath Proof Explorer


Theorem efmnd1bas

Description: The monoid of endofunctions on a singleton consists of the identity only. (Contributed by AV, 31-Jan-2024)

Ref Expression
Hypotheses efmnd1bas.1 No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmnd1bas.2 B=BaseG
efmnd1bas.0 A=I
Assertion efmnd1bas IVB=II

Proof

Step Hyp Ref Expression
1 efmnd1bas.1 Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmnd1bas.2 B=BaseG
3 efmnd1bas.0 A=I
4 3 fveq2i Could not format ( EndoFMnd ` A ) = ( EndoFMnd ` { I } ) : No typesetting found for |- ( EndoFMnd ` A ) = ( EndoFMnd ` { I } ) with typecode |-
5 1 4 eqtri Could not format G = ( EndoFMnd ` { I } ) : No typesetting found for |- G = ( EndoFMnd ` { I } ) with typecode |-
6 5 2 efmndbas B=II
7 fsng IVIVp:IIp=II
8 7 anidms IVp:IIp=II
9 snex IV
10 9 9 elmap pIIp:II
11 velsn pIIp=II
12 8 10 11 3bitr4g IVpIIpII
13 12 eqrdv IVII=II
14 6 13 eqtrid IVB=II