Metamath Proof Explorer


Theorem efrn2lp

Description: A well-founded class contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994)

Ref Expression
Assertion efrn2lp EFrABACA¬BCCB

Proof

Step Hyp Ref Expression
1 fr2nr EFrABACA¬BECCEB
2 epelg CABECBC
3 epelg BACEBCB
4 2 3 bi2anan9r BACABECCEBBCCB
5 4 adantl EFrABACABECCEBBCCB
6 1 5 mtbid EFrABACA¬BCCB