Metamath Proof Explorer


Theorem ehlval

Description: Value of the Euclidean space of dimension N . (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ehlval.e E=𝔼hilN
Assertion ehlval N0E=msup

Proof

Step Hyp Ref Expression
1 ehlval.e E=𝔼hilN
2 oveq2 n=N1n=1N
3 2 fveq2d n=Nmsup=msup
4 df-ehl 𝔼hil=n0msup
5 fvex msupV
6 3 4 5 fvmpt N0𝔼hilN=msup
7 1 6 eqtrid N0E=msup