Metamath Proof Explorer


Theorem el

Description: Any set is an element of some other set. See elALT for a shorter proof using more axioms, and see elALT2 for a proof that uses ax-9 and ax-pow instead of ax-pr . (Contributed by NM, 4-Jan-2002) (Proof shortened by Andrew Salmon, 25-Jul-2011) Use ax-pr instead of ax-9 and ax-pow . (Revised by BTernaryTau, 2-Dec-2024)

Ref Expression
Assertion el yxy

Proof

Step Hyp Ref Expression
1 ax-pr yzz=xz=xzy
2 pm4.25 z=xz=xz=x
3 2 imbi1i z=xzyz=xz=xzy
4 3 albii zz=xzyzz=xz=xzy
5 elequ1 z=xzyxy
6 5 equsalvw zz=xzyxy
7 4 6 bitr3i zz=xz=xzyxy
8 7 exbii yzz=xz=xzyyxy
9 1 8 mpbi yxy