Metamath Proof Explorer


Theorem elab6g

Description: Membership in a class abstraction. Class version of sb6 . (Contributed by SN, 5-Oct-2024)

Ref Expression
Assertion elab6g AVAx|φxx=Aφ

Proof

Step Hyp Ref Expression
1 eleq1 y=Ayx|φAx|φ
2 eqeq2 y=Ax=yx=A
3 2 imbi1d y=Ax=yφx=Aφ
4 3 albidv y=Axx=yφxx=Aφ
5 df-clab yx|φyxφ
6 sb6 yxφxx=yφ
7 5 6 bitri yx|φxx=yφ
8 1 4 7 vtoclbg AVAx|φxx=Aφ