Metamath Proof Explorer


Theorem elabgf

Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003) (Revised by Mario Carneiro, 12-Oct-2016)

Ref Expression
Hypotheses elabgf.1 _xA
elabgf.2 xψ
elabgf.3 x=Aφψ
Assertion elabgf ABAx|φψ

Proof

Step Hyp Ref Expression
1 elabgf.1 _xA
2 elabgf.2 xψ
3 elabgf.3 x=Aφψ
4 nfab1 _xx|φ
5 1 4 nfel xAx|φ
6 5 2 nfbi xAx|φψ
7 eleq1 x=Axx|φAx|φ
8 7 3 bibi12d x=Axx|φφAx|φψ
9 abid xx|φφ
10 1 6 8 9 vtoclgf ABAx|φψ