Metamath Proof Explorer


Theorem eldifpw

Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007)

Ref Expression
Hypothesis eldifpw.1 CV
Assertion eldifpw A𝒫B¬CBAC𝒫BC𝒫B

Proof

Step Hyp Ref Expression
1 eldifpw.1 CV
2 elpwi A𝒫BAB
3 unss1 ABACBC
4 unexg A𝒫BCVACV
5 1 4 mpan2 A𝒫BACV
6 elpwg ACVAC𝒫BCACBC
7 5 6 syl A𝒫BAC𝒫BCACBC
8 3 7 imbitrrid A𝒫BABAC𝒫BC
9 2 8 mpd A𝒫BAC𝒫BC
10 elpwi AC𝒫BACB
11 10 unssbd AC𝒫BCB
12 11 con3i ¬CB¬AC𝒫B
13 9 12 anim12i A𝒫B¬CBAC𝒫BC¬AC𝒫B
14 eldif AC𝒫BC𝒫BAC𝒫BC¬AC𝒫B
15 13 14 sylibr A𝒫B¬CBAC𝒫BC𝒫B