Metamath Proof Explorer


Theorem eldisjeq

Description: Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion eldisjeq A=BElDisjAElDisjB

Proof

Step Hyp Ref Expression
1 reseq2 A=BE-1A=E-1B
2 1 disjeqd A=BDisjE-1ADisjE-1B
3 df-eldisj ElDisjADisjE-1A
4 df-eldisj ElDisjBDisjE-1B
5 2 3 4 3bitr4g A=BElDisjAElDisjB