Metamath Proof Explorer


Theorem elec1cnvres

Description: Elementhood in the converse restricted coset of B . (Contributed by Peter Mazsa, 21-Sep-2018)

Ref Expression
Assertion elec1cnvres B V C B R A -1 C A C R B

Proof

Step Hyp Ref Expression
1 relcnv Rel R A -1
2 relelec Rel R A -1 C B R A -1 B R A -1 C
3 1 2 ax-mp C B R A -1 B R A -1 C
4 br1cnvres B V B R A -1 C C A C R B
5 3 4 bitrid B V C B R A -1 C A C R B