Metamath Proof Explorer


Theorem elex22VD

Description: Virtual deduction proof of elex22 . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elex22VD A B A C x x B x C

Proof

Step Hyp Ref Expression
1 idn1 A B A C A B A C
2 simpl A B A C A B
3 1 2 e1a A B A C A B
4 elisset A B x x = A
5 3 4 e1a A B A C x x = A
6 idn2 A B A C , x = A x = A
7 eleq1a A B x = A x B
8 3 6 7 e12 A B A C , x = A x B
9 simpr A B A C A C
10 1 9 e1a A B A C A C
11 eleq1a A C x = A x C
12 10 6 11 e12 A B A C , x = A x C
13 pm3.2 x B x C x B x C
14 8 12 13 e22 A B A C , x = A x B x C
15 14 in2 A B A C x = A x B x C
16 15 gen11 A B A C x x = A x B x C
17 exim x x = A x B x C x x = A x x B x C
18 16 17 e1a A B A C x x = A x x B x C
19 pm2.27 x x = A x x = A x x B x C x x B x C
20 5 18 19 e11 A B A C x x B x C
21 20 in1 A B A C x x B x C