| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
| 2 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
| 3 |
1 2
|
e1a |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ 𝐴 ∈ 𝐵 ) |
| 4 |
|
elisset |
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 5 |
3 4
|
e1a |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ ∃ 𝑥 𝑥 = 𝐴 ) |
| 6 |
|
idn2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) , 𝑥 = 𝐴 ▶ 𝑥 = 𝐴 ) |
| 7 |
|
eleq1a |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 8 |
3 6 7
|
e12 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) , 𝑥 = 𝐴 ▶ 𝑥 ∈ 𝐵 ) |
| 9 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) |
| 10 |
1 9
|
e1a |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ 𝐴 ∈ 𝐶 ) |
| 11 |
|
eleq1a |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐶 ) ) |
| 12 |
10 6 11
|
e12 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) , 𝑥 = 𝐴 ▶ 𝑥 ∈ 𝐶 ) |
| 13 |
|
pm3.2 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 14 |
8 12 13
|
e22 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) , 𝑥 = 𝐴 ▶ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |
| 15 |
14
|
in2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 16 |
15
|
gen11 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 17 |
|
exim |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 18 |
16 17
|
e1a |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 19 |
|
pm2.27 |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 20 |
5 18 19
|
e11 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |
| 21 |
20
|
in1 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |