Metamath Proof Explorer


Theorem elex22VD

Description: Virtual deduction proof of elex22 . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elex22VD ( ( 𝐴𝐵𝐴𝐶 ) → ∃ 𝑥 ( 𝑥𝐵𝑥𝐶 ) )

Proof

Step Hyp Ref Expression
1 idn1 (    ( 𝐴𝐵𝐴𝐶 )    ▶    ( 𝐴𝐵𝐴𝐶 )    )
2 simpl ( ( 𝐴𝐵𝐴𝐶 ) → 𝐴𝐵 )
3 1 2 e1a (    ( 𝐴𝐵𝐴𝐶 )    ▶    𝐴𝐵    )
4 elisset ( 𝐴𝐵 → ∃ 𝑥 𝑥 = 𝐴 )
5 3 4 e1a (    ( 𝐴𝐵𝐴𝐶 )    ▶   𝑥 𝑥 = 𝐴    )
6 idn2 (    ( 𝐴𝐵𝐴𝐶 )    ,    𝑥 = 𝐴    ▶    𝑥 = 𝐴    )
7 eleq1a ( 𝐴𝐵 → ( 𝑥 = 𝐴𝑥𝐵 ) )
8 3 6 7 e12 (    ( 𝐴𝐵𝐴𝐶 )    ,    𝑥 = 𝐴    ▶    𝑥𝐵    )
9 simpr ( ( 𝐴𝐵𝐴𝐶 ) → 𝐴𝐶 )
10 1 9 e1a (    ( 𝐴𝐵𝐴𝐶 )    ▶    𝐴𝐶    )
11 eleq1a ( 𝐴𝐶 → ( 𝑥 = 𝐴𝑥𝐶 ) )
12 10 6 11 e12 (    ( 𝐴𝐵𝐴𝐶 )    ,    𝑥 = 𝐴    ▶    𝑥𝐶    )
13 pm3.2 ( 𝑥𝐵 → ( 𝑥𝐶 → ( 𝑥𝐵𝑥𝐶 ) ) )
14 8 12 13 e22 (    ( 𝐴𝐵𝐴𝐶 )    ,    𝑥 = 𝐴    ▶    ( 𝑥𝐵𝑥𝐶 )    )
15 14 in2 (    ( 𝐴𝐵𝐴𝐶 )    ▶    ( 𝑥 = 𝐴 → ( 𝑥𝐵𝑥𝐶 ) )    )
16 15 gen11 (    ( 𝐴𝐵𝐴𝐶 )    ▶   𝑥 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝑥𝐶 ) )    )
17 exim ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝑥𝐶 ) ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥𝐵𝑥𝐶 ) ) )
18 16 17 e1a (    ( 𝐴𝐵𝐴𝐶 )    ▶    ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥𝐵𝑥𝐶 ) )    )
19 pm2.27 ( ∃ 𝑥 𝑥 = 𝐴 → ( ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥𝐵𝑥𝐶 ) ) → ∃ 𝑥 ( 𝑥𝐵𝑥𝐶 ) ) )
20 5 18 19 e11 (    ( 𝐴𝐵𝐴𝐶 )    ▶   𝑥 ( 𝑥𝐵𝑥𝐶 )    )
21 20 in1 ( ( 𝐴𝐵𝐴𝐶 ) → ∃ 𝑥 ( 𝑥𝐵𝑥𝐶 ) )