Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
2 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
3 |
1 2
|
e1a |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ 𝐴 ∈ 𝐵 ) |
4 |
|
elisset |
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 ) |
5 |
3 4
|
e1a |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ ∃ 𝑥 𝑥 = 𝐴 ) |
6 |
|
idn2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) , 𝑥 = 𝐴 ▶ 𝑥 = 𝐴 ) |
7 |
|
eleq1a |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
8 |
3 6 7
|
e12 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) , 𝑥 = 𝐴 ▶ 𝑥 ∈ 𝐵 ) |
9 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) |
10 |
1 9
|
e1a |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ 𝐴 ∈ 𝐶 ) |
11 |
|
eleq1a |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐶 ) ) |
12 |
10 6 11
|
e12 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) , 𝑥 = 𝐴 ▶ 𝑥 ∈ 𝐶 ) |
13 |
|
pm3.2 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
14 |
8 12 13
|
e22 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) , 𝑥 = 𝐴 ▶ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |
15 |
14
|
in2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
16 |
15
|
gen11 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
17 |
|
exim |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
18 |
16 17
|
e1a |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
19 |
|
pm2.27 |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
20 |
5 18 19
|
e11 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ▶ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |
21 |
20
|
in1 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |