Metamath Proof Explorer


Theorem elex22

Description: If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011)

Ref Expression
Assertion elex22 ABACxxBxC

Proof

Step Hyp Ref Expression
1 eleq1a ABx=AxB
2 eleq1a ACx=AxC
3 1 2 anim12ii ABACx=AxBxC
4 3 alrimiv ABACxx=AxBxC
5 elissetv ABxx=A
6 5 adantr ABACxx=A
7 exim xx=AxBxCxx=AxxBxC
8 4 6 7 sylc ABACxxBxC