Metamath Proof Explorer


Theorem elex22

Description: If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011)

Ref Expression
Assertion elex22
|- ( ( A e. B /\ A e. C ) -> E. x ( x e. B /\ x e. C ) )

Proof

Step Hyp Ref Expression
1 eleq1a
 |-  ( A e. B -> ( x = A -> x e. B ) )
2 eleq1a
 |-  ( A e. C -> ( x = A -> x e. C ) )
3 1 2 anim12ii
 |-  ( ( A e. B /\ A e. C ) -> ( x = A -> ( x e. B /\ x e. C ) ) )
4 3 alrimiv
 |-  ( ( A e. B /\ A e. C ) -> A. x ( x = A -> ( x e. B /\ x e. C ) ) )
5 elisset
 |-  ( A e. B -> E. x x = A )
6 5 adantr
 |-  ( ( A e. B /\ A e. C ) -> E. x x = A )
7 exim
 |-  ( A. x ( x = A -> ( x e. B /\ x e. C ) ) -> ( E. x x = A -> E. x ( x e. B /\ x e. C ) ) )
8 4 6 7 sylc
 |-  ( ( A e. B /\ A e. C ) -> E. x ( x e. B /\ x e. C ) )