Metamath Proof Explorer


Theorem elfrlmbasn0

Description: If the dimension of a free module over a ring is not 0, every element of its base set is not empty. (Contributed by AV, 10-Feb-2019)

Ref Expression
Hypotheses frlmfibas.f F=RfreeLModI
frlmfibas.n N=BaseR
elfrlmbasn0.b B=BaseF
Assertion elfrlmbasn0 IVIXBX

Proof

Step Hyp Ref Expression
1 frlmfibas.f F=RfreeLModI
2 frlmfibas.n N=BaseR
3 elfrlmbasn0.b B=BaseF
4 1 2 3 frlmbasf IVXBX:IN
5 4 ex IVXBX:IN
6 f0dom0 X:INI=X=
7 6 biimprd X:INX=I=
8 7 necon3d X:INIX
9 8 com12 IX:INX
10 5 9 sylan9 IVIXBX