Metamath Proof Explorer


Theorem elfz1uz

Description: Membership in a 1-based finite set of sequential integers with an upper integer. (Contributed by AV, 23-Jan-2022)

Ref Expression
Assertion elfz1uz NMNN1M

Proof

Step Hyp Ref Expression
1 simpl NMNN
2 eluzle MNNM
3 2 adantl NMNNM
4 eluzelz MNM
5 4 adantl NMNM
6 fznn MN1MNNM
7 5 6 syl NMNN1MNNM
8 1 3 7 mpbir2and NMNN1M