Metamath Proof Explorer


Theorem elfzo0suble

Description: The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is less than or equal to the upper bound. (Contributed by AV, 1-Sep-2025) (Proof shortened by SN, 18-Sep-2025)

Ref Expression
Assertion elfzo0suble A 0 ..^ B B A B

Proof

Step Hyp Ref Expression
1 elfzoel2 A 0 ..^ B B
2 1 zred A 0 ..^ B B
3 elfzoelz A 0 ..^ B A
4 3 zred A 0 ..^ B A
5 1 zcnd A 0 ..^ B B
6 5 subidd A 0 ..^ B B B = 0
7 elfzole1 A 0 ..^ B 0 A
8 6 7 eqbrtrd A 0 ..^ B B B A
9 2 2 4 8 subled A 0 ..^ B B A B