Metamath Proof Explorer


Theorem elfzo0suble

Description: The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is less than or equal to the upper bound. (Contributed by AV, 1-Sep-2025) (Proof shortened by SN, 18-Sep-2025)

Ref Expression
Assertion elfzo0suble
|- ( A e. ( 0 ..^ B ) -> ( B - A ) <_ B )

Proof

Step Hyp Ref Expression
1 elfzoel2
 |-  ( A e. ( 0 ..^ B ) -> B e. ZZ )
2 1 zred
 |-  ( A e. ( 0 ..^ B ) -> B e. RR )
3 elfzoelz
 |-  ( A e. ( 0 ..^ B ) -> A e. ZZ )
4 3 zred
 |-  ( A e. ( 0 ..^ B ) -> A e. RR )
5 1 zcnd
 |-  ( A e. ( 0 ..^ B ) -> B e. CC )
6 5 subidd
 |-  ( A e. ( 0 ..^ B ) -> ( B - B ) = 0 )
7 elfzole1
 |-  ( A e. ( 0 ..^ B ) -> 0 <_ A )
8 6 7 eqbrtrd
 |-  ( A e. ( 0 ..^ B ) -> ( B - B ) <_ A )
9 2 2 4 8 subled
 |-  ( A e. ( 0 ..^ B ) -> ( B - A ) <_ B )