Metamath Proof Explorer


Theorem elfzo0suble

Description: The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is less than or equal to the upper bound. (Contributed by AV, 1-Sep-2025) (Proof shortened by SN, 18-Sep-2025)

Ref Expression
Assertion elfzo0suble ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → ( 𝐵𝐴 ) ≤ 𝐵 )

Proof

Step Hyp Ref Expression
1 elfzoel2 ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐵 ∈ ℤ )
2 1 zred ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐵 ∈ ℝ )
3 elfzoelz ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 ∈ ℤ )
4 3 zred ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 ∈ ℝ )
5 1 zcnd ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐵 ∈ ℂ )
6 5 subidd ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → ( 𝐵𝐵 ) = 0 )
7 elfzole1 ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 0 ≤ 𝐴 )
8 6 7 eqbrtrd ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → ( 𝐵𝐵 ) ≤ 𝐴 )
9 2 2 4 8 subled ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → ( 𝐵𝐴 ) ≤ 𝐵 )