Metamath Proof Explorer


Theorem elfzo1elm1fzo0

Description: Membership of a positive integer decremented by one in a half-open range of nonnegative integers. (Contributed by AV, 20-Mar-2021)

Ref Expression
Assertion elfzo1elm1fzo0 I1..^NI10..^N1

Proof

Step Hyp Ref Expression
1 elfzoelz I1..^NI
2 elfzoel2 I1..^NN
3 1 2 jca I1..^NIN
4 elfzom1b INI1..^NI10..^N1
5 4 biimpd INI1..^NI10..^N1
6 3 5 mpcom I1..^NI10..^N1