Metamath Proof Explorer


Theorem elfzp12

Description: Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010)

Ref Expression
Assertion elfzp12 NMKMNK=MKM+1N

Proof

Step Hyp Ref Expression
1 elex KMNKV
2 1 anim2i NMKMNNMKV
3 elfvex NMMV
4 eleq1 K=MKVMV
5 3 4 syl5ibrcom NMK=MKV
6 5 imdistani NMK=MNMKV
7 elex KM+1NKV
8 7 anim2i NMKM+1NNMKV
9 6 8 jaodan NMK=MKM+1NNMKV
10 fzpred NMMN=MM+1N
11 10 eleq2d NMKMNKMM+1N
12 elun KMM+1NKMKM+1N
13 11 12 bitrdi NMKMNKMKM+1N
14 elsng KVKMK=M
15 14 orbi1d KVKMKM+1NK=MKM+1N
16 13 15 sylan9bb NMKVKMNK=MKM+1N
17 2 9 16 pm5.21nd NMKMNK=MKM+1N