Metamath Proof Explorer


Theorem elid

Description: Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 after elrid . (Contributed by BJ, 28-Aug-2022)

Ref Expression
Assertion elid AIxA=xx

Proof

Step Hyp Ref Expression
1 reli RelI
2 dfrel3 RelIIV=I
3 1 2 mpbi IV=I
4 3 eqcomi I=IV
5 4 eleq2i AIAIV
6 elrid AIVxVA=xx
7 rexv xVA=xxxA=xx
8 5 6 7 3bitri AIxA=xx