Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
elimag
Next ⟩
elima
Metamath Proof Explorer
Ascii
Unicode
Theorem
elimag
Description:
Membership in an image. Theorem 34 of
Suppes
p. 65.
(Contributed by
NM
, 20-Jan-2007)
Ref
Expression
Assertion
elimag
⊢
A
∈
V
→
A
∈
B
C
↔
∃
x
∈
C
x
B
A
Proof
Step
Hyp
Ref
Expression
1
breq2
⊢
y
=
A
→
x
B
y
↔
x
B
A
2
1
rexbidv
⊢
y
=
A
→
∃
x
∈
C
x
B
y
↔
∃
x
∈
C
x
B
A
3
dfima2
⊢
B
C
=
y
|
∃
x
∈
C
x
B
y
4
2
3
elab2g
⊢
A
∈
V
→
A
∈
B
C
↔
∃
x
∈
C
x
B
A