Metamath Proof Explorer


Theorem elimag

Description: Membership in an image. Theorem 34 of Suppes p. 65. (Contributed by NM, 20-Jan-2007)

Ref Expression
Assertion elimag A V A B C x C x B A

Proof

Step Hyp Ref Expression
1 breq2 y = A x B y x B A
2 1 rexbidv y = A x C x B y x C x B A
3 dfima2 B C = y | x C x B y
4 2 3 elab2g A V A B C x C x B A