Metamath Proof Explorer


Theorem elimaint

Description: Element of image of intersection. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion elimaint yABbBaAbya

Proof

Step Hyp Ref Expression
1 vex yV
2 1 elima yABbBbAy
3 df-br bAybyA
4 opex byV
5 4 elint2 byAaAbya
6 3 5 bitri bAyaAbya
7 6 rexbii bBbAybBaAbya
8 2 7 bitri yABbBaAbya