Metamath Proof Explorer


Theorem elimel

Description: Eliminate a membership hypothesis for weak deduction theorem, when special case B e. C is provable. (Contributed by NM, 15-May-1999)

Ref Expression
Hypothesis elimel.1 BC
Assertion elimel ifACABC

Proof

Step Hyp Ref Expression
1 elimel.1 BC
2 eleq1 A=ifACABACifACABC
3 eleq1 B=ifACABBCifACABC
4 2 3 1 elimhyp ifACABC