Metamath Proof Explorer


Theorem elimdhyp

Description: Version of elimhyp where the hypothesis is deduced from the final antecedent. See divalg for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008)

Ref Expression
Hypotheses elimdhyp.1 φψ
elimdhyp.2 A=ifφABψχ
elimdhyp.3 B=ifφABθχ
elimdhyp.4 θ
Assertion elimdhyp χ

Proof

Step Hyp Ref Expression
1 elimdhyp.1 φψ
2 elimdhyp.2 A=ifφABψχ
3 elimdhyp.3 B=ifφABθχ
4 elimdhyp.4 θ
5 iftrue φifφAB=A
6 5 eqcomd φA=ifφAB
7 6 2 syl φψχ
8 1 7 mpbid φχ
9 iffalse ¬φifφAB=B
10 9 eqcomd ¬φB=ifφAB
11 10 3 syl ¬φθχ
12 4 11 mpbii ¬φχ
13 8 12 pm2.61i χ