Description: Version of elimhyp where the hypothesis is deduced from the final antecedent. See divalg for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elimdhyp.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| elimdhyp.2 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| elimdhyp.3 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐴 , 𝐵 ) → ( 𝜃 ↔ 𝜒 ) ) | ||
| elimdhyp.4 | ⊢ 𝜃 | ||
| Assertion | elimdhyp | ⊢ 𝜒 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elimdhyp.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | elimdhyp.2 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | elimdhyp.3 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐴 , 𝐵 ) → ( 𝜃 ↔ 𝜒 ) ) | |
| 4 | elimdhyp.4 | ⊢ 𝜃 | |
| 5 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 6 | 5 | eqcomd | ⊢ ( 𝜑 → 𝐴 = if ( 𝜑 , 𝐴 , 𝐵 ) ) | 
| 7 | 6 2 | syl | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | 
| 8 | 1 7 | mpbid | ⊢ ( 𝜑 → 𝜒 ) | 
| 9 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) | |
| 10 | 9 | eqcomd | ⊢ ( ¬ 𝜑 → 𝐵 = if ( 𝜑 , 𝐴 , 𝐵 ) ) | 
| 11 | 10 3 | syl | ⊢ ( ¬ 𝜑 → ( 𝜃 ↔ 𝜒 ) ) | 
| 12 | 4 11 | mpbii | ⊢ ( ¬ 𝜑 → 𝜒 ) | 
| 13 | 8 12 | pm2.61i | ⊢ 𝜒 |