Metamath Proof Explorer


Theorem elimh

Description: Hypothesis builder for the weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html . (Contributed by NM, 26-Jun-2002) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019) Commute consequent. (Revised by Steven Nguyen, 27-Apr-2023)

Ref Expression
Hypotheses elimh.1 if- χ φ ψ φ τ χ
elimh.2 if- χ φ ψ ψ τ θ
elimh.3 θ
Assertion elimh τ

Proof

Step Hyp Ref Expression
1 elimh.1 if- χ φ ψ φ τ χ
2 elimh.2 if- χ φ ψ ψ τ θ
3 elimh.3 θ
4 ifptru χ if- χ φ ψ φ
5 4 1 syl χ τ χ
6 5 ibir χ τ
7 ifpfal ¬ χ if- χ φ ψ ψ
8 7 2 syl ¬ χ τ θ
9 3 8 mpbiri ¬ χ τ
10 6 9 pm2.61i τ