Metamath Proof Explorer


Theorem elimh

Description: Hypothesis builder for the weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html . (Contributed by NM, 26-Jun-2002) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019) Commute consequent. (Revised by Steven Nguyen, 27-Apr-2023)

Ref Expression
Hypotheses elimh.1 if-χφψφτχ
elimh.2 if-χφψψτθ
elimh.3 θ
Assertion elimh τ

Proof

Step Hyp Ref Expression
1 elimh.1 if-χφψφτχ
2 elimh.2 if-χφψψτθ
3 elimh.3 θ
4 ifptru χif-χφψφ
5 4 1 syl χτχ
6 5 ibir χτ
7 ifpfal ¬χif-χφψψ
8 7 2 syl ¬χτθ
9 3 8 mpbiri ¬χτ
10 6 9 pm2.61i τ