Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Experiments with weak deduction theorem
elimhyps
Next ⟩
dedths
Metamath Proof Explorer
Ascii
Unicode
Theorem
elimhyps
Description:
A version of
elimhyp
using explicit substitution.
(Contributed by
NM
, 15-Jun-2019)
Ref
Expression
Hypothesis
elimhyps.1
⊢
[
˙
B
/
x
]
˙
φ
Assertion
elimhyps
⊢
[
˙
if
φ
x
B
/
x
]
˙
φ
Proof
Step
Hyp
Ref
Expression
1
elimhyps.1
⊢
[
˙
B
/
x
]
˙
φ
2
sbceq1a
⊢
x
=
if
φ
x
B
→
φ
↔
[
˙
if
φ
x
B
/
x
]
˙
φ
3
dfsbcq
⊢
B
=
if
φ
x
B
→
[
˙
B
/
x
]
˙
φ
↔
[
˙
if
φ
x
B
/
x
]
˙
φ
4
2
3
1
elimhyp
⊢
[
˙
if
φ
x
B
/
x
]
˙
φ