Metamath Proof Explorer


Theorem elimhyps

Description: A version of elimhyp using explicit substitution. (Contributed by NM, 15-Jun-2019)

Ref Expression
Hypothesis elimhyps.1 [˙B / x]˙ φ
Assertion elimhyps [˙ if φ x B / x]˙ φ

Proof

Step Hyp Ref Expression
1 elimhyps.1 [˙B / x]˙ φ
2 sbceq1a x = if φ x B φ [˙ if φ x B / x]˙ φ
3 dfsbcq B = if φ x B [˙B / x]˙ φ [˙ if φ x B / x]˙ φ
4 2 3 1 elimhyp [˙ if φ x B / x]˙ φ