Metamath Proof Explorer


Theorem elimhyps

Description: A version of elimhyp using explicit substitution. (Contributed by NM, 15-Jun-2019)

Ref Expression
Hypothesis elimhyps.1
|- [. B / x ]. ph
Assertion elimhyps
|- [. if ( ph , x , B ) / x ]. ph

Proof

Step Hyp Ref Expression
1 elimhyps.1
 |-  [. B / x ]. ph
2 sbceq1a
 |-  ( x = if ( ph , x , B ) -> ( ph <-> [. if ( ph , x , B ) / x ]. ph ) )
3 dfsbcq
 |-  ( B = if ( ph , x , B ) -> ( [. B / x ]. ph <-> [. if ( ph , x , B ) / x ]. ph ) )
4 2 3 1 elimhyp
 |-  [. if ( ph , x , B ) / x ]. ph