Description: A version of elimhyp using explicit substitution. (Contributed by NM, 15-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elimhyps.1 | |- [. B / x ]. ph |
|
Assertion | elimhyps | |- [. if ( ph , x , B ) / x ]. ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimhyps.1 | |- [. B / x ]. ph |
|
2 | sbceq1a | |- ( x = if ( ph , x , B ) -> ( ph <-> [. if ( ph , x , B ) / x ]. ph ) ) |
|
3 | dfsbcq | |- ( B = if ( ph , x , B ) -> ( [. B / x ]. ph <-> [. if ( ph , x , B ) / x ]. ph ) ) |
|
4 | 2 3 1 | elimhyp | |- [. if ( ph , x , B ) / x ]. ph |