Description: A version of elimhyp using explicit substitution. (Contributed by NM, 15-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elimhyps.1 | |- [. B / x ]. ph | |
| Assertion | elimhyps | |- [. if ( ph , x , B ) / x ]. ph | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elimhyps.1 | |- [. B / x ]. ph | |
| 2 | sbceq1a | |- ( x = if ( ph , x , B ) -> ( ph <-> [. if ( ph , x , B ) / x ]. ph ) ) | |
| 3 | dfsbcq | |- ( B = if ( ph , x , B ) -> ( [. B / x ]. ph <-> [. if ( ph , x , B ) / x ]. ph ) ) | |
| 4 | 2 3 1 | elimhyp | |- [. if ( ph , x , B ) / x ]. ph |