| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dedths.1 |  |-  [. if ( ph , x , B ) / x ]. ps | 
						
							| 2 |  | dfsbcq |  |-  ( x = if ( [. x / x ]. ph , x , B ) -> ( [. x / x ]. ps <-> [. if ( [. x / x ]. ph , x , B ) / x ]. ps ) ) | 
						
							| 3 |  | sbcid |  |-  ( [. x / x ]. ph <-> ph ) | 
						
							| 4 |  | ifbi |  |-  ( ( [. x / x ]. ph <-> ph ) -> if ( [. x / x ]. ph , x , B ) = if ( ph , x , B ) ) | 
						
							| 5 |  | dfsbcq |  |-  ( if ( [. x / x ]. ph , x , B ) = if ( ph , x , B ) -> ( [. if ( [. x / x ]. ph , x , B ) / x ]. ps <-> [. if ( ph , x , B ) / x ]. ps ) ) | 
						
							| 6 | 3 4 5 | mp2b |  |-  ( [. if ( [. x / x ]. ph , x , B ) / x ]. ps <-> [. if ( ph , x , B ) / x ]. ps ) | 
						
							| 7 | 1 6 | mpbir |  |-  [. if ( [. x / x ]. ph , x , B ) / x ]. ps | 
						
							| 8 | 2 7 | dedth |  |-  ( [. x / x ]. ph -> [. x / x ]. ps ) | 
						
							| 9 |  | sbcid |  |-  ( [. x / x ]. ps <-> ps ) | 
						
							| 10 | 8 3 9 | 3imtr3i |  |-  ( ph -> ps ) |