Metamath Proof Explorer


Theorem dedths

Description: A version of weak deduction theorem dedth using explicit substitution. (Contributed by NM, 15-Jun-2019)

Ref Expression
Hypothesis dedths.1
|- [. if ( ph , x , B ) / x ]. ps
Assertion dedths
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 dedths.1
 |-  [. if ( ph , x , B ) / x ]. ps
2 dfsbcq
 |-  ( x = if ( [. x / x ]. ph , x , B ) -> ( [. x / x ]. ps <-> [. if ( [. x / x ]. ph , x , B ) / x ]. ps ) )
3 sbcid
 |-  ( [. x / x ]. ph <-> ph )
4 ifbi
 |-  ( ( [. x / x ]. ph <-> ph ) -> if ( [. x / x ]. ph , x , B ) = if ( ph , x , B ) )
5 dfsbcq
 |-  ( if ( [. x / x ]. ph , x , B ) = if ( ph , x , B ) -> ( [. if ( [. x / x ]. ph , x , B ) / x ]. ps <-> [. if ( ph , x , B ) / x ]. ps ) )
6 3 4 5 mp2b
 |-  ( [. if ( [. x / x ]. ph , x , B ) / x ]. ps <-> [. if ( ph , x , B ) / x ]. ps )
7 1 6 mpbir
 |-  [. if ( [. x / x ]. ph , x , B ) / x ]. ps
8 2 7 dedth
 |-  ( [. x / x ]. ph -> [. x / x ]. ps )
9 sbcid
 |-  ( [. x / x ]. ps <-> ps )
10 8 3 9 3imtr3i
 |-  ( ph -> ps )