Step |
Hyp |
Ref |
Expression |
1 |
|
dedths.1 |
|- [. if ( ph , x , B ) / x ]. ps |
2 |
|
dfsbcq |
|- ( x = if ( [. x / x ]. ph , x , B ) -> ( [. x / x ]. ps <-> [. if ( [. x / x ]. ph , x , B ) / x ]. ps ) ) |
3 |
|
sbcid |
|- ( [. x / x ]. ph <-> ph ) |
4 |
|
ifbi |
|- ( ( [. x / x ]. ph <-> ph ) -> if ( [. x / x ]. ph , x , B ) = if ( ph , x , B ) ) |
5 |
|
dfsbcq |
|- ( if ( [. x / x ]. ph , x , B ) = if ( ph , x , B ) -> ( [. if ( [. x / x ]. ph , x , B ) / x ]. ps <-> [. if ( ph , x , B ) / x ]. ps ) ) |
6 |
3 4 5
|
mp2b |
|- ( [. if ( [. x / x ]. ph , x , B ) / x ]. ps <-> [. if ( ph , x , B ) / x ]. ps ) |
7 |
1 6
|
mpbir |
|- [. if ( [. x / x ]. ph , x , B ) / x ]. ps |
8 |
2 7
|
dedth |
|- ( [. x / x ]. ph -> [. x / x ]. ps ) |
9 |
|
sbcid |
|- ( [. x / x ]. ps <-> ps ) |
10 |
8 3 9
|
3imtr3i |
|- ( ph -> ps ) |