Metamath Proof Explorer


Theorem dedths

Description: A version of weak deduction theorem dedth using explicit substitution. (Contributed by NM, 15-Jun-2019)

Ref Expression
Hypothesis dedths.1 [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓
Assertion dedths ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 dedths.1 [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓
2 dfsbcq ( 𝑥 = if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) → ( [ 𝑥 / 𝑥 ] 𝜓[ if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓 ) )
3 sbcid ( [ 𝑥 / 𝑥 ] 𝜑𝜑 )
4 ifbi ( ( [ 𝑥 / 𝑥 ] 𝜑𝜑 ) → if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) = if ( 𝜑 , 𝑥 , 𝐵 ) )
5 dfsbcq ( if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) = if ( 𝜑 , 𝑥 , 𝐵 ) → ( [ if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓[ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓 ) )
6 3 4 5 mp2b ( [ if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓[ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓 )
7 1 6 mpbir [ if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓
8 2 7 dedth ( [ 𝑥 / 𝑥 ] 𝜑[ 𝑥 / 𝑥 ] 𝜓 )
9 sbcid ( [ 𝑥 / 𝑥 ] 𝜓𝜓 )
10 8 3 9 3imtr3i ( 𝜑𝜓 )