| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dedths.1 |
⊢ [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓 |
| 2 |
|
dfsbcq |
⊢ ( 𝑥 = if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) → ( [ 𝑥 / 𝑥 ] 𝜓 ↔ [ if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓 ) ) |
| 3 |
|
sbcid |
⊢ ( [ 𝑥 / 𝑥 ] 𝜑 ↔ 𝜑 ) |
| 4 |
|
ifbi |
⊢ ( ( [ 𝑥 / 𝑥 ] 𝜑 ↔ 𝜑 ) → if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) = if ( 𝜑 , 𝑥 , 𝐵 ) ) |
| 5 |
|
dfsbcq |
⊢ ( if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) = if ( 𝜑 , 𝑥 , 𝐵 ) → ( [ if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓 ↔ [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓 ) ) |
| 6 |
3 4 5
|
mp2b |
⊢ ( [ if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓 ↔ [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓 ) |
| 7 |
1 6
|
mpbir |
⊢ [ if ( [ 𝑥 / 𝑥 ] 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜓 |
| 8 |
2 7
|
dedth |
⊢ ( [ 𝑥 / 𝑥 ] 𝜑 → [ 𝑥 / 𝑥 ] 𝜓 ) |
| 9 |
|
sbcid |
⊢ ( [ 𝑥 / 𝑥 ] 𝜓 ↔ 𝜓 ) |
| 10 |
8 3 9
|
3imtr3i |
⊢ ( 𝜑 → 𝜓 ) |