| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dedths.1 | ⊢ [ if ( 𝜑 ,  𝑥 ,  𝐵 )  /  𝑥 ] 𝜓 | 
						
							| 2 |  | dfsbcq | ⊢ ( 𝑥  =  if ( [ 𝑥  /  𝑥 ] 𝜑 ,  𝑥 ,  𝐵 )  →  ( [ 𝑥  /  𝑥 ] 𝜓  ↔  [ if ( [ 𝑥  /  𝑥 ] 𝜑 ,  𝑥 ,  𝐵 )  /  𝑥 ] 𝜓 ) ) | 
						
							| 3 |  | sbcid | ⊢ ( [ 𝑥  /  𝑥 ] 𝜑  ↔  𝜑 ) | 
						
							| 4 |  | ifbi | ⊢ ( ( [ 𝑥  /  𝑥 ] 𝜑  ↔  𝜑 )  →  if ( [ 𝑥  /  𝑥 ] 𝜑 ,  𝑥 ,  𝐵 )  =  if ( 𝜑 ,  𝑥 ,  𝐵 ) ) | 
						
							| 5 |  | dfsbcq | ⊢ ( if ( [ 𝑥  /  𝑥 ] 𝜑 ,  𝑥 ,  𝐵 )  =  if ( 𝜑 ,  𝑥 ,  𝐵 )  →  ( [ if ( [ 𝑥  /  𝑥 ] 𝜑 ,  𝑥 ,  𝐵 )  /  𝑥 ] 𝜓  ↔  [ if ( 𝜑 ,  𝑥 ,  𝐵 )  /  𝑥 ] 𝜓 ) ) | 
						
							| 6 | 3 4 5 | mp2b | ⊢ ( [ if ( [ 𝑥  /  𝑥 ] 𝜑 ,  𝑥 ,  𝐵 )  /  𝑥 ] 𝜓  ↔  [ if ( 𝜑 ,  𝑥 ,  𝐵 )  /  𝑥 ] 𝜓 ) | 
						
							| 7 | 1 6 | mpbir | ⊢ [ if ( [ 𝑥  /  𝑥 ] 𝜑 ,  𝑥 ,  𝐵 )  /  𝑥 ] 𝜓 | 
						
							| 8 | 2 7 | dedth | ⊢ ( [ 𝑥  /  𝑥 ] 𝜑  →  [ 𝑥  /  𝑥 ] 𝜓 ) | 
						
							| 9 |  | sbcid | ⊢ ( [ 𝑥  /  𝑥 ] 𝜓  ↔  𝜓 ) | 
						
							| 10 | 8 3 9 | 3imtr3i | ⊢ ( 𝜑  →  𝜓 ) |