Metamath Proof Explorer


Theorem dedths

Description: A version of weak deduction theorem dedth using explicit substitution. (Contributed by NM, 15-Jun-2019)

Ref Expression
Hypothesis dedths.1 [˙ if φ x B / x]˙ ψ
Assertion dedths φ ψ

Proof

Step Hyp Ref Expression
1 dedths.1 [˙ if φ x B / x]˙ ψ
2 dfsbcq x = if [˙x / x]˙ φ x B [˙x / x]˙ ψ [˙ if [˙x / x]˙ φ x B / x]˙ ψ
3 sbcid [˙x / x]˙ φ φ
4 ifbi [˙x / x]˙ φ φ if [˙x / x]˙ φ x B = if φ x B
5 dfsbcq if [˙x / x]˙ φ x B = if φ x B [˙ if [˙x / x]˙ φ x B / x]˙ ψ [˙ if φ x B / x]˙ ψ
6 3 4 5 mp2b [˙ if [˙x / x]˙ φ x B / x]˙ ψ [˙ if φ x B / x]˙ ψ
7 1 6 mpbir [˙ if [˙x / x]˙ φ x B / x]˙ ψ
8 2 7 dedth [˙x / x]˙ φ [˙x / x]˙ ψ
9 sbcid [˙x / x]˙ ψ ψ
10 8 3 9 3imtr3i φ ψ