| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negeq |  |-  ( x = A -> -u x = -u A ) | 
						
							| 2 | 1 | eleq1d |  |-  ( x = A -> ( -u x e. RR <-> -u A e. RR ) ) | 
						
							| 3 |  | vex |  |-  x e. _V | 
						
							| 4 |  | c0ex |  |-  0 e. _V | 
						
							| 5 | 3 4 | ifex |  |-  if ( x e. RR , x , 0 ) e. _V | 
						
							| 6 |  | csbnegg |  |-  ( if ( x e. RR , x , 0 ) e. _V -> [_ if ( x e. RR , x , 0 ) / x ]_ -u x = -u [_ if ( x e. RR , x , 0 ) / x ]_ x ) | 
						
							| 7 | 5 6 | ax-mp |  |-  [_ if ( x e. RR , x , 0 ) / x ]_ -u x = -u [_ if ( x e. RR , x , 0 ) / x ]_ x | 
						
							| 8 |  | csbvarg |  |-  ( 0 e. _V -> [_ 0 / x ]_ x = 0 ) | 
						
							| 9 | 4 8 | ax-mp |  |-  [_ 0 / x ]_ x = 0 | 
						
							| 10 |  | 0re |  |-  0 e. RR | 
						
							| 11 | 9 10 | eqeltri |  |-  [_ 0 / x ]_ x e. RR | 
						
							| 12 |  | sbcel1g |  |-  ( 0 e. _V -> ( [. 0 / x ]. x e. RR <-> [_ 0 / x ]_ x e. RR ) ) | 
						
							| 13 | 4 12 | ax-mp |  |-  ( [. 0 / x ]. x e. RR <-> [_ 0 / x ]_ x e. RR ) | 
						
							| 14 | 11 13 | mpbir |  |-  [. 0 / x ]. x e. RR | 
						
							| 15 | 14 | elimhyps |  |-  [. if ( x e. RR , x , 0 ) / x ]. x e. RR | 
						
							| 16 |  | sbcel1g |  |-  ( if ( x e. RR , x , 0 ) e. _V -> ( [. if ( x e. RR , x , 0 ) / x ]. x e. RR <-> [_ if ( x e. RR , x , 0 ) / x ]_ x e. RR ) ) | 
						
							| 17 | 5 16 | ax-mp |  |-  ( [. if ( x e. RR , x , 0 ) / x ]. x e. RR <-> [_ if ( x e. RR , x , 0 ) / x ]_ x e. RR ) | 
						
							| 18 | 15 17 | mpbi |  |-  [_ if ( x e. RR , x , 0 ) / x ]_ x e. RR | 
						
							| 19 | 18 | renegcli |  |-  -u [_ if ( x e. RR , x , 0 ) / x ]_ x e. RR | 
						
							| 20 | 7 19 | eqeltri |  |-  [_ if ( x e. RR , x , 0 ) / x ]_ -u x e. RR | 
						
							| 21 |  | sbcel1g |  |-  ( if ( x e. RR , x , 0 ) e. _V -> ( [. if ( x e. RR , x , 0 ) / x ]. -u x e. RR <-> [_ if ( x e. RR , x , 0 ) / x ]_ -u x e. RR ) ) | 
						
							| 22 | 5 21 | ax-mp |  |-  ( [. if ( x e. RR , x , 0 ) / x ]. -u x e. RR <-> [_ if ( x e. RR , x , 0 ) / x ]_ -u x e. RR ) | 
						
							| 23 | 20 22 | mpbir |  |-  [. if ( x e. RR , x , 0 ) / x ]. -u x e. RR | 
						
							| 24 | 23 | dedths |  |-  ( x e. RR -> -u x e. RR ) | 
						
							| 25 | 2 24 | vtoclga |  |-  ( A e. RR -> -u A e. RR ) |