Step |
Hyp |
Ref |
Expression |
1 |
|
negeq |
|- ( x = A -> -u x = -u A ) |
2 |
1
|
eleq1d |
|- ( x = A -> ( -u x e. RR <-> -u A e. RR ) ) |
3 |
|
vex |
|- x e. _V |
4 |
|
c0ex |
|- 0 e. _V |
5 |
3 4
|
ifex |
|- if ( x e. RR , x , 0 ) e. _V |
6 |
|
csbnegg |
|- ( if ( x e. RR , x , 0 ) e. _V -> [_ if ( x e. RR , x , 0 ) / x ]_ -u x = -u [_ if ( x e. RR , x , 0 ) / x ]_ x ) |
7 |
5 6
|
ax-mp |
|- [_ if ( x e. RR , x , 0 ) / x ]_ -u x = -u [_ if ( x e. RR , x , 0 ) / x ]_ x |
8 |
|
csbvarg |
|- ( 0 e. _V -> [_ 0 / x ]_ x = 0 ) |
9 |
4 8
|
ax-mp |
|- [_ 0 / x ]_ x = 0 |
10 |
|
0re |
|- 0 e. RR |
11 |
9 10
|
eqeltri |
|- [_ 0 / x ]_ x e. RR |
12 |
|
sbcel1g |
|- ( 0 e. _V -> ( [. 0 / x ]. x e. RR <-> [_ 0 / x ]_ x e. RR ) ) |
13 |
4 12
|
ax-mp |
|- ( [. 0 / x ]. x e. RR <-> [_ 0 / x ]_ x e. RR ) |
14 |
11 13
|
mpbir |
|- [. 0 / x ]. x e. RR |
15 |
14
|
elimhyps |
|- [. if ( x e. RR , x , 0 ) / x ]. x e. RR |
16 |
|
sbcel1g |
|- ( if ( x e. RR , x , 0 ) e. _V -> ( [. if ( x e. RR , x , 0 ) / x ]. x e. RR <-> [_ if ( x e. RR , x , 0 ) / x ]_ x e. RR ) ) |
17 |
5 16
|
ax-mp |
|- ( [. if ( x e. RR , x , 0 ) / x ]. x e. RR <-> [_ if ( x e. RR , x , 0 ) / x ]_ x e. RR ) |
18 |
15 17
|
mpbi |
|- [_ if ( x e. RR , x , 0 ) / x ]_ x e. RR |
19 |
18
|
renegcli |
|- -u [_ if ( x e. RR , x , 0 ) / x ]_ x e. RR |
20 |
7 19
|
eqeltri |
|- [_ if ( x e. RR , x , 0 ) / x ]_ -u x e. RR |
21 |
|
sbcel1g |
|- ( if ( x e. RR , x , 0 ) e. _V -> ( [. if ( x e. RR , x , 0 ) / x ]. -u x e. RR <-> [_ if ( x e. RR , x , 0 ) / x ]_ -u x e. RR ) ) |
22 |
5 21
|
ax-mp |
|- ( [. if ( x e. RR , x , 0 ) / x ]. -u x e. RR <-> [_ if ( x e. RR , x , 0 ) / x ]_ -u x e. RR ) |
23 |
20 22
|
mpbir |
|- [. if ( x e. RR , x , 0 ) / x ]. -u x e. RR |
24 |
23
|
dedths |
|- ( x e. RR -> -u x e. RR ) |
25 |
2 24
|
vtoclga |
|- ( A e. RR -> -u A e. RR ) |