Metamath Proof Explorer


Theorem renegclALT

Description: Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl . (Contributed by NM, 15-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion renegclALT
|- ( A e. RR -> -u A e. RR )

Proof

Step Hyp Ref Expression
1 negeq
 |-  ( x = A -> -u x = -u A )
2 1 eleq1d
 |-  ( x = A -> ( -u x e. RR <-> -u A e. RR ) )
3 vex
 |-  x e. _V
4 c0ex
 |-  0 e. _V
5 3 4 ifex
 |-  if ( x e. RR , x , 0 ) e. _V
6 csbnegg
 |-  ( if ( x e. RR , x , 0 ) e. _V -> [_ if ( x e. RR , x , 0 ) / x ]_ -u x = -u [_ if ( x e. RR , x , 0 ) / x ]_ x )
7 5 6 ax-mp
 |-  [_ if ( x e. RR , x , 0 ) / x ]_ -u x = -u [_ if ( x e. RR , x , 0 ) / x ]_ x
8 csbvarg
 |-  ( 0 e. _V -> [_ 0 / x ]_ x = 0 )
9 4 8 ax-mp
 |-  [_ 0 / x ]_ x = 0
10 0re
 |-  0 e. RR
11 9 10 eqeltri
 |-  [_ 0 / x ]_ x e. RR
12 sbcel1g
 |-  ( 0 e. _V -> ( [. 0 / x ]. x e. RR <-> [_ 0 / x ]_ x e. RR ) )
13 4 12 ax-mp
 |-  ( [. 0 / x ]. x e. RR <-> [_ 0 / x ]_ x e. RR )
14 11 13 mpbir
 |-  [. 0 / x ]. x e. RR
15 14 elimhyps
 |-  [. if ( x e. RR , x , 0 ) / x ]. x e. RR
16 sbcel1g
 |-  ( if ( x e. RR , x , 0 ) e. _V -> ( [. if ( x e. RR , x , 0 ) / x ]. x e. RR <-> [_ if ( x e. RR , x , 0 ) / x ]_ x e. RR ) )
17 5 16 ax-mp
 |-  ( [. if ( x e. RR , x , 0 ) / x ]. x e. RR <-> [_ if ( x e. RR , x , 0 ) / x ]_ x e. RR )
18 15 17 mpbi
 |-  [_ if ( x e. RR , x , 0 ) / x ]_ x e. RR
19 18 renegcli
 |-  -u [_ if ( x e. RR , x , 0 ) / x ]_ x e. RR
20 7 19 eqeltri
 |-  [_ if ( x e. RR , x , 0 ) / x ]_ -u x e. RR
21 sbcel1g
 |-  ( if ( x e. RR , x , 0 ) e. _V -> ( [. if ( x e. RR , x , 0 ) / x ]. -u x e. RR <-> [_ if ( x e. RR , x , 0 ) / x ]_ -u x e. RR ) )
22 5 21 ax-mp
 |-  ( [. if ( x e. RR , x , 0 ) / x ]. -u x e. RR <-> [_ if ( x e. RR , x , 0 ) / x ]_ -u x e. RR )
23 20 22 mpbir
 |-  [. if ( x e. RR , x , 0 ) / x ]. -u x e. RR
24 23 dedths
 |-  ( x e. RR -> -u x e. RR )
25 2 24 vtoclga
 |-  ( A e. RR -> -u A e. RR )