Metamath Proof Explorer


Theorem elimhyps2

Description: Generalization of elimhyps that is not useful unless we can separately prove |- A e. _V . (Contributed by NM, 13-Jun-2019)

Ref Expression
Hypothesis elimhyps2.1
|- [. B / x ]. ph
Assertion elimhyps2
|- [. if ( [. A / x ]. ph , A , B ) / x ]. ph

Proof

Step Hyp Ref Expression
1 elimhyps2.1
 |-  [. B / x ]. ph
2 dfsbcq
 |-  ( A = if ( [. A / x ]. ph , A , B ) -> ( [. A / x ]. ph <-> [. if ( [. A / x ]. ph , A , B ) / x ]. ph ) )
3 dfsbcq
 |-  ( B = if ( [. A / x ]. ph , A , B ) -> ( [. B / x ]. ph <-> [. if ( [. A / x ]. ph , A , B ) / x ]. ph ) )
4 2 3 1 elimhyp
 |-  [. if ( [. A / x ]. ph , A , B ) / x ]. ph