Description: Generalization of elimhyps that is not useful unless we can separately prove |- A e. _V . (Contributed by NM, 13-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elimhyps2.1 | |- [. B / x ]. ph |
|
Assertion | elimhyps2 | |- [. if ( [. A / x ]. ph , A , B ) / x ]. ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimhyps2.1 | |- [. B / x ]. ph |
|
2 | dfsbcq | |- ( A = if ( [. A / x ]. ph , A , B ) -> ( [. A / x ]. ph <-> [. if ( [. A / x ]. ph , A , B ) / x ]. ph ) ) |
|
3 | dfsbcq | |- ( B = if ( [. A / x ]. ph , A , B ) -> ( [. B / x ]. ph <-> [. if ( [. A / x ]. ph , A , B ) / x ]. ph ) ) |
|
4 | 2 3 1 | elimhyp | |- [. if ( [. A / x ]. ph , A , B ) / x ]. ph |