Metamath Proof Explorer


Theorem elimhyps2

Description: Generalization of elimhyps that is not useful unless we can separately prove |- A e. _V . (Contributed by NM, 13-Jun-2019)

Ref Expression
Hypothesis elimhyps2.1 [ 𝐵 / 𝑥 ] 𝜑
Assertion elimhyps2 [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜑

Proof

Step Hyp Ref Expression
1 elimhyps2.1 [ 𝐵 / 𝑥 ] 𝜑
2 dfsbcq ( 𝐴 = if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜑 ) )
3 dfsbcq ( 𝐵 = if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) → ( [ 𝐵 / 𝑥 ] 𝜑[ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜑 ) )
4 2 3 1 elimhyp [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜑