Description: Generalization of elimhyps that is not useful unless we can separately prove |- A e. _V . (Contributed by NM, 13-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elimhyps2.1 | ⊢ [ 𝐵 / 𝑥 ] 𝜑 | |
Assertion | elimhyps2 | ⊢ [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimhyps2.1 | ⊢ [ 𝐵 / 𝑥 ] 𝜑 | |
2 | dfsbcq | ⊢ ( 𝐴 = if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜑 ) ) | |
3 | dfsbcq | ⊢ ( 𝐵 = if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) → ( [ 𝐵 / 𝑥 ] 𝜑 ↔ [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜑 ) ) | |
4 | 2 3 1 | elimhyp | ⊢ [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜑 |