Description: Generalization of elimhyps that is not useful unless we can separately prove |- A e. _V . (Contributed by NM, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elimhyps2.1 | ⊢ [ 𝐵 / 𝑥 ] 𝜑 | |
| Assertion | elimhyps2 | ⊢ [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimhyps2.1 | ⊢ [ 𝐵 / 𝑥 ] 𝜑 | |
| 2 | dfsbcq | ⊢ ( 𝐴 = if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜑 ) ) | |
| 3 | dfsbcq | ⊢ ( 𝐵 = if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) → ( [ 𝐵 / 𝑥 ] 𝜑 ↔ [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜑 ) ) | |
| 4 | 2 3 1 | elimhyp | ⊢ [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜑 |