Description: Generalization of dedths that is not useful unless we can separately prove |- A e. _V . (Contributed by NM, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dedths2.1 | ⊢ [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜓 | |
| Assertion | dedths2 | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dedths2.1 | ⊢ [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜓 | |
| 2 | dfsbcq | ⊢ ( 𝐴 = if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜓 ) ) | |
| 3 | 2 1 | dedth | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) |