Metamath Proof Explorer


Theorem dedths2

Description: Generalization of dedths that is not useful unless we can separately prove |- A e. _V . (Contributed by NM, 13-Jun-2019)

Ref Expression
Hypothesis dedths2.1 [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜓
Assertion dedths2 ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 dedths2.1 [ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜓
2 dfsbcq ( 𝐴 = if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) → ( [ 𝐴 / 𝑥 ] 𝜓[ if ( [ 𝐴 / 𝑥 ] 𝜑 , 𝐴 , 𝐵 ) / 𝑥 ] 𝜓 ) )
3 2 1 dedth ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 )