Metamath Proof Explorer


Theorem dedths2

Description: Generalization of dedths that is not useful unless we can separately prove |- A e. _V . (Contributed by NM, 13-Jun-2019)

Ref Expression
Hypothesis dedths2.1 [˙ if [˙A / x]˙ φ A B / x]˙ ψ
Assertion dedths2 [˙A / x]˙ φ [˙A / x]˙ ψ

Proof

Step Hyp Ref Expression
1 dedths2.1 [˙ if [˙A / x]˙ φ A B / x]˙ ψ
2 dfsbcq A = if [˙A / x]˙ φ A B [˙A / x]˙ ψ [˙ if [˙A / x]˙ φ A B / x]˙ ψ
3 2 1 dedth [˙A / x]˙ φ [˙A / x]˙ ψ