Description: Generalization of dedths that is not useful unless we can separately prove |- A e. _V . (Contributed by NM, 13-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dedths2.1 | |- [. if ( [. A / x ]. ph , A , B ) / x ]. ps |
|
Assertion | dedths2 | |- ( [. A / x ]. ph -> [. A / x ]. ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedths2.1 | |- [. if ( [. A / x ]. ph , A , B ) / x ]. ps |
|
2 | dfsbcq | |- ( A = if ( [. A / x ]. ph , A , B ) -> ( [. A / x ]. ps <-> [. if ( [. A / x ]. ph , A , B ) / x ]. ps ) ) |
|
3 | 2 1 | dedth | |- ( [. A / x ]. ph -> [. A / x ]. ps ) |