Metamath Proof Explorer


Theorem dedths2

Description: Generalization of dedths that is not useful unless we can separately prove |- A e. _V . (Contributed by NM, 13-Jun-2019)

Ref Expression
Hypothesis dedths2.1
|- [. if ( [. A / x ]. ph , A , B ) / x ]. ps
Assertion dedths2
|- ( [. A / x ]. ph -> [. A / x ]. ps )

Proof

Step Hyp Ref Expression
1 dedths2.1
 |-  [. if ( [. A / x ]. ph , A , B ) / x ]. ps
2 dfsbcq
 |-  ( A = if ( [. A / x ]. ph , A , B ) -> ( [. A / x ]. ps <-> [. if ( [. A / x ]. ph , A , B ) / x ]. ps ) )
3 2 1 dedth
 |-  ( [. A / x ]. ph -> [. A / x ]. ps )