Description: Generalization of dedths that is not useful unless we can separately prove |- A e. _V . (Contributed by NM, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dedths2.1 | |- [. if ( [. A / x ]. ph , A , B ) / x ]. ps | |
| Assertion | dedths2 | |- ( [. A / x ]. ph -> [. A / x ]. ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dedths2.1 | |- [. if ( [. A / x ]. ph , A , B ) / x ]. ps | |
| 2 | dfsbcq | |- ( A = if ( [. A / x ]. ph , A , B ) -> ( [. A / x ]. ps <-> [. if ( [. A / x ]. ph , A , B ) / x ]. ps ) ) | |
| 3 | 2 1 | dedth | |- ( [. A / x ]. ph -> [. A / x ]. ps ) |