Metamath Proof Explorer


Theorem elimhyps

Description: A version of elimhyp using explicit substitution. (Contributed by NM, 15-Jun-2019)

Ref Expression
Hypothesis elimhyps.1 [ 𝐵 / 𝑥 ] 𝜑
Assertion elimhyps [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜑

Proof

Step Hyp Ref Expression
1 elimhyps.1 [ 𝐵 / 𝑥 ] 𝜑
2 sbceq1a ( 𝑥 = if ( 𝜑 , 𝑥 , 𝐵 ) → ( 𝜑[ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜑 ) )
3 dfsbcq ( 𝐵 = if ( 𝜑 , 𝑥 , 𝐵 ) → ( [ 𝐵 / 𝑥 ] 𝜑[ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜑 ) )
4 2 3 1 elimhyp [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜑