Description: A version of elimhyp using explicit substitution. (Contributed by NM, 15-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elimhyps.1 | ⊢ [ 𝐵 / 𝑥 ] 𝜑 | |
| Assertion | elimhyps | ⊢ [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elimhyps.1 | ⊢ [ 𝐵 / 𝑥 ] 𝜑 | |
| 2 | sbceq1a | ⊢ ( 𝑥 = if ( 𝜑 , 𝑥 , 𝐵 ) → ( 𝜑 ↔ [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜑 ) ) | |
| 3 | dfsbcq | ⊢ ( 𝐵 = if ( 𝜑 , 𝑥 , 𝐵 ) → ( [ 𝐵 / 𝑥 ] 𝜑 ↔ [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜑 ) ) | |
| 4 | 2 3 1 | elimhyp | ⊢ [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜑 |