Description: A version of elimhyp using explicit substitution. (Contributed by NM, 15-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elimhyps.1 | ⊢ [ 𝐵 / 𝑥 ] 𝜑 | |
Assertion | elimhyps | ⊢ [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimhyps.1 | ⊢ [ 𝐵 / 𝑥 ] 𝜑 | |
2 | sbceq1a | ⊢ ( 𝑥 = if ( 𝜑 , 𝑥 , 𝐵 ) → ( 𝜑 ↔ [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜑 ) ) | |
3 | dfsbcq | ⊢ ( 𝐵 = if ( 𝜑 , 𝑥 , 𝐵 ) → ( [ 𝐵 / 𝑥 ] 𝜑 ↔ [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜑 ) ) | |
4 | 2 3 1 | elimhyp | ⊢ [ if ( 𝜑 , 𝑥 , 𝐵 ) / 𝑥 ] 𝜑 |