Metamath Proof Explorer


Theorem elimhyps2

Description: Generalization of elimhyps that is not useful unless we can separately prove |- A e. _V . (Contributed by NM, 13-Jun-2019)

Ref Expression
Hypothesis elimhyps2.1 [˙B / x]˙ φ
Assertion elimhyps2 [˙ if [˙A / x]˙ φ A B / x]˙ φ

Proof

Step Hyp Ref Expression
1 elimhyps2.1 [˙B / x]˙ φ
2 dfsbcq A = if [˙A / x]˙ φ A B [˙A / x]˙ φ [˙ if [˙A / x]˙ φ A B / x]˙ φ
3 dfsbcq B = if [˙A / x]˙ φ A B [˙B / x]˙ φ [˙ if [˙A / x]˙ φ A B / x]˙ φ
4 2 3 1 elimhyp [˙ if [˙A / x]˙ φ A B / x]˙ φ