Metamath Proof Explorer


Theorem eliminable-abeqv

Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals variable. (Contributed by BJ, 30-Apr-2024) Beware not to use symmetry of class equality. (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eliminable-abeqv x | φ = y z z x φ z y

Proof

Step Hyp Ref Expression
1 dfcleq x | φ = y z z x | φ z y
2 eliminable-velab z x | φ z x φ
3 2 bibi1i z x | φ z y z x φ z y
4 3 albii z z x | φ z y z z x φ z y
5 1 4 bitri x | φ = y z z x φ z y