Metamath Proof Explorer


Theorem eliminable-abeqv

Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals variable. (Contributed by BJ, 30-Apr-2024) Beware not to use symmetry of class equality. (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eliminable-abeqv
|- ( { x | ph } = y <-> A. z ( [ z / x ] ph <-> z e. y ) )

Proof

Step Hyp Ref Expression
1 dfcleq
 |-  ( { x | ph } = y <-> A. z ( z e. { x | ph } <-> z e. y ) )
2 eliminable-velab
 |-  ( z e. { x | ph } <-> [ z / x ] ph )
3 2 bibi1i
 |-  ( ( z e. { x | ph } <-> z e. y ) <-> ( [ z / x ] ph <-> z e. y ) )
4 3 albii
 |-  ( A. z ( z e. { x | ph } <-> z e. y ) <-> A. z ( [ z / x ] ph <-> z e. y ) )
5 1 4 bitri
 |-  ( { x | ph } = y <-> A. z ( [ z / x ] ph <-> z e. y ) )