Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals variable. (Contributed by BJ, 30-Apr-2024) Beware not to use symmetry of class equality. (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | eliminable-abeqv | |- ( { x | ph } = y <-> A. z ( [ z / x ] ph <-> z e. y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq | |- ( { x | ph } = y <-> A. z ( z e. { x | ph } <-> z e. y ) ) |
|
2 | eliminable-velab | |- ( z e. { x | ph } <-> [ z / x ] ph ) |
|
3 | 2 | bibi1i | |- ( ( z e. { x | ph } <-> z e. y ) <-> ( [ z / x ] ph <-> z e. y ) ) |
4 | 3 | albii | |- ( A. z ( z e. { x | ph } <-> z e. y ) <-> A. z ( [ z / x ] ph <-> z e. y ) ) |
5 | 1 4 | bitri | |- ( { x | ph } = y <-> A. z ( [ z / x ] ph <-> z e. y ) ) |