Metamath Proof Explorer


Theorem eliminable-abeqab

Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals abstraction. (Contributed by BJ, 30-Apr-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eliminable-abeqab
|- ( { x | ph } = { y | ps } <-> A. z ( [ z / x ] ph <-> [ z / y ] ps ) )

Proof

Step Hyp Ref Expression
1 dfcleq
 |-  ( { x | ph } = { y | ps } <-> A. z ( z e. { x | ph } <-> z e. { y | ps } ) )
2 eliminable-velab
 |-  ( z e. { x | ph } <-> [ z / x ] ph )
3 eliminable-velab
 |-  ( z e. { y | ps } <-> [ z / y ] ps )
4 2 3 bibi12i
 |-  ( ( z e. { x | ph } <-> z e. { y | ps } ) <-> ( [ z / x ] ph <-> [ z / y ] ps ) )
5 4 albii
 |-  ( A. z ( z e. { x | ph } <-> z e. { y | ps } ) <-> A. z ( [ z / x ] ph <-> [ z / y ] ps ) )
6 1 5 bitri
 |-  ( { x | ph } = { y | ps } <-> A. z ( [ z / x ] ph <-> [ z / y ] ps ) )