Metamath Proof Explorer


Theorem eliminable-abeqab

Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals abstraction. (Contributed by BJ, 30-Apr-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eliminable-abeqab ( { 𝑥𝜑 } = { 𝑦𝜓 } ↔ ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 ) )

Proof

Step Hyp Ref Expression
1 dfcleq ( { 𝑥𝜑 } = { 𝑦𝜓 } ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ↔ 𝑧 ∈ { 𝑦𝜓 } ) )
2 eliminable-velab ( 𝑧 ∈ { 𝑥𝜑 } ↔ [ 𝑧 / 𝑥 ] 𝜑 )
3 eliminable-velab ( 𝑧 ∈ { 𝑦𝜓 } ↔ [ 𝑧 / 𝑦 ] 𝜓 )
4 2 3 bibi12i ( ( 𝑧 ∈ { 𝑥𝜑 } ↔ 𝑧 ∈ { 𝑦𝜓 } ) ↔ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 ) )
5 4 albii ( ∀ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ↔ 𝑧 ∈ { 𝑦𝜓 } ) ↔ ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 ) )
6 1 5 bitri ( { 𝑥𝜑 } = { 𝑦𝜓 } ↔ ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 ) )