Metamath Proof Explorer


Theorem eliminable-abelv

Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to variable. (Contributed by BJ, 30-Apr-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eliminable-abelv ( { 𝑥𝜑 } ∈ 𝑦 ↔ ∃ 𝑧 ( ∀ 𝑡 ( 𝑡𝑧 ↔ [ 𝑡 / 𝑥 ] 𝜑 ) ∧ 𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 dfclel ( { 𝑥𝜑 } ∈ 𝑦 ↔ ∃ 𝑧 ( 𝑧 = { 𝑥𝜑 } ∧ 𝑧𝑦 ) )
2 eliminable-veqab ( 𝑧 = { 𝑥𝜑 } ↔ ∀ 𝑡 ( 𝑡𝑧 ↔ [ 𝑡 / 𝑥 ] 𝜑 ) )
3 2 anbi1i ( ( 𝑧 = { 𝑥𝜑 } ∧ 𝑧𝑦 ) ↔ ( ∀ 𝑡 ( 𝑡𝑧 ↔ [ 𝑡 / 𝑥 ] 𝜑 ) ∧ 𝑧𝑦 ) )
4 3 exbii ( ∃ 𝑧 ( 𝑧 = { 𝑥𝜑 } ∧ 𝑧𝑦 ) ↔ ∃ 𝑧 ( ∀ 𝑡 ( 𝑡𝑧 ↔ [ 𝑡 / 𝑥 ] 𝜑 ) ∧ 𝑧𝑦 ) )
5 1 4 bitri ( { 𝑥𝜑 } ∈ 𝑦 ↔ ∃ 𝑧 ( ∀ 𝑡 ( 𝑡𝑧 ↔ [ 𝑡 / 𝑥 ] 𝜑 ) ∧ 𝑧𝑦 ) )