Metamath Proof Explorer


Theorem eliminable-veqab

Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable equals abstraction. (Contributed by BJ, 30-Apr-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eliminable-veqab ( 𝑥 = { 𝑦𝜑 } ↔ ∀ 𝑧 ( 𝑧𝑥 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 dfcleq ( 𝑥 = { 𝑦𝜑 } ↔ ∀ 𝑧 ( 𝑧𝑥𝑧 ∈ { 𝑦𝜑 } ) )
2 eliminable-velab ( 𝑧 ∈ { 𝑦𝜑 } ↔ [ 𝑧 / 𝑦 ] 𝜑 )
3 2 bibi2i ( ( 𝑧𝑥𝑧 ∈ { 𝑦𝜑 } ) ↔ ( 𝑧𝑥 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) )
4 3 albii ( ∀ 𝑧 ( 𝑧𝑥𝑧 ∈ { 𝑦𝜑 } ) ↔ ∀ 𝑧 ( 𝑧𝑥 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) )
5 1 4 bitri ( 𝑥 = { 𝑦𝜑 } ↔ ∀ 𝑧 ( 𝑧𝑥 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) )