Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable equals abstraction. (Contributed by BJ, 30-Apr-2024) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | eliminable-veqab | |- ( x = { y | ph } <-> A. z ( z e. x <-> [ z / y ] ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq | |- ( x = { y | ph } <-> A. z ( z e. x <-> z e. { y | ph } ) ) |
|
2 | eliminable-velab | |- ( z e. { y | ph } <-> [ z / y ] ph ) |
|
3 | 2 | bibi2i | |- ( ( z e. x <-> z e. { y | ph } ) <-> ( z e. x <-> [ z / y ] ph ) ) |
4 | 3 | albii | |- ( A. z ( z e. x <-> z e. { y | ph } ) <-> A. z ( z e. x <-> [ z / y ] ph ) ) |
5 | 1 4 | bitri | |- ( x = { y | ph } <-> A. z ( z e. x <-> [ z / y ] ph ) ) |