Metamath Proof Explorer


Theorem eliminable-veqab

Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable equals abstraction. (Contributed by BJ, 30-Apr-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eliminable-veqab
|- ( x = { y | ph } <-> A. z ( z e. x <-> [ z / y ] ph ) )

Proof

Step Hyp Ref Expression
1 dfcleq
 |-  ( x = { y | ph } <-> A. z ( z e. x <-> z e. { y | ph } ) )
2 eliminable-velab
 |-  ( z e. { y | ph } <-> [ z / y ] ph )
3 2 bibi2i
 |-  ( ( z e. x <-> z e. { y | ph } ) <-> ( z e. x <-> [ z / y ] ph ) )
4 3 albii
 |-  ( A. z ( z e. x <-> z e. { y | ph } ) <-> A. z ( z e. x <-> [ z / y ] ph ) )
5 1 4 bitri
 |-  ( x = { y | ph } <-> A. z ( z e. x <-> [ z / y ] ph ) )