Metamath Proof Explorer


Theorem eliminable-abelv

Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to variable. (Contributed by BJ, 30-Apr-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eliminable-abelv
|- ( { x | ph } e. y <-> E. z ( A. t ( t e. z <-> [ t / x ] ph ) /\ z e. y ) )

Proof

Step Hyp Ref Expression
1 dfclel
 |-  ( { x | ph } e. y <-> E. z ( z = { x | ph } /\ z e. y ) )
2 eliminable-veqab
 |-  ( z = { x | ph } <-> A. t ( t e. z <-> [ t / x ] ph ) )
3 2 anbi1i
 |-  ( ( z = { x | ph } /\ z e. y ) <-> ( A. t ( t e. z <-> [ t / x ] ph ) /\ z e. y ) )
4 3 exbii
 |-  ( E. z ( z = { x | ph } /\ z e. y ) <-> E. z ( A. t ( t e. z <-> [ t / x ] ph ) /\ z e. y ) )
5 1 4 bitri
 |-  ( { x | ph } e. y <-> E. z ( A. t ( t e. z <-> [ t / x ] ph ) /\ z e. y ) )