Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to variable. (Contributed by BJ, 30-Apr-2024) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | eliminable-abelv | |- ( { x | ph } e. y <-> E. z ( A. t ( t e. z <-> [ t / x ] ph ) /\ z e. y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel | |- ( { x | ph } e. y <-> E. z ( z = { x | ph } /\ z e. y ) ) |
|
2 | eliminable-veqab | |- ( z = { x | ph } <-> A. t ( t e. z <-> [ t / x ] ph ) ) |
|
3 | 2 | anbi1i | |- ( ( z = { x | ph } /\ z e. y ) <-> ( A. t ( t e. z <-> [ t / x ] ph ) /\ z e. y ) ) |
4 | 3 | exbii | |- ( E. z ( z = { x | ph } /\ z e. y ) <-> E. z ( A. t ( t e. z <-> [ t / x ] ph ) /\ z e. y ) ) |
5 | 1 4 | bitri | |- ( { x | ph } e. y <-> E. z ( A. t ( t e. z <-> [ t / x ] ph ) /\ z e. y ) ) |