Metamath Proof Explorer


Theorem eliminable-abelab

Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to abstraction. (Contributed by BJ, 30-Apr-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eliminable-abelab
|- ( { x | ph } e. { y | ps } <-> E. z ( A. t ( t e. z <-> [ t / x ] ph ) /\ [ z / y ] ps ) )

Proof

Step Hyp Ref Expression
1 dfclel
 |-  ( { x | ph } e. { y | ps } <-> E. z ( z = { x | ph } /\ z e. { y | ps } ) )
2 eliminable-veqab
 |-  ( z = { x | ph } <-> A. t ( t e. z <-> [ t / x ] ph ) )
3 eliminable-velab
 |-  ( z e. { y | ps } <-> [ z / y ] ps )
4 2 3 anbi12i
 |-  ( ( z = { x | ph } /\ z e. { y | ps } ) <-> ( A. t ( t e. z <-> [ t / x ] ph ) /\ [ z / y ] ps ) )
5 4 exbii
 |-  ( E. z ( z = { x | ph } /\ z e. { y | ps } ) <-> E. z ( A. t ( t e. z <-> [ t / x ] ph ) /\ [ z / y ] ps ) )
6 1 5 bitri
 |-  ( { x | ph } e. { y | ps } <-> E. z ( A. t ( t e. z <-> [ t / x ] ph ) /\ [ z / y ] ps ) )